MongoDB已经流行了很长一段时间,相对于MySQL,究竟什么场景更需要用MongoDB?下面是一些总结。

更高的写入负载

默认情况下,MongoDB更侧重高数据写入性能,而非事务安全,MongoDB很适合业务系统中有大量“低价值”数据的场景。但是应当避免在高事务安全性的系统中使用MongoDB,除非能从架构设计上保证事务安全。

高可用性

MongoDB的复副集(Master-Slave)配置非常简洁方便,此外,MongoDB可以快速响应的处理单节点故障,自动、安全的完成故障转移。这些特性使得MongoDB能在一个相对不稳定(如云主机)的环境中,保持高可用性。

数据量很大或者未来会变得很大

依赖数据库(MySQL)自身的特性,完成数据的扩展是较困难的事,在MySQL中,当一个单达表到5-10GB时会出现明显的性能降级,此时需要通过数据的水平和垂直拆分、库的拆分完成扩展,使用MySQL通常需要借助驱动层或代理层完成这类需求。而MongoDB内建了多种数据分片的特性,可以很好的适应大数据量的需求。

基于位置的数据查询

MongoDB支持二维空间索引,因此可以快速及精确的从指定位置获取数据。

表结构不明确,且数据在不断变大

在一些传统RDBMS中,增加一个字段会锁住整个数据库/表,或者在执行一个重负载的请求时会明显造成其它请求的性能降级。通常发生在数据表大于1G的时候(当大于1TB时更甚)。 因MongoDB是文档型数据库,为非结构货的文档增加一个新字段是很快速的操作,并且不会影响到已有数据。另外一个好处当业务数据发生变化时,是将不在需要由DBA修改表结构。

没有DBA支持

如果没有专职的DBA,并且准备不使用标准的关系型思想(结构化、连接等)来处理数据,那么MongoDB将会是你的首选。MongoDB对于对像数据的存储非常方便,类可以直接序列化成JSON存储到MongoDB中。 但是需要先了解一些最佳实践,避免当数据变大后,由于文档设计问题而造成的性能缺陷。


BillRun – 基于MongoDB的帐单系统 (来自oc666)

BillRun是由Ofer Cohen推出开源账单系统,采用MongoDB做为数据存储。这套账单系统被以色列一家增速最快的电信运营商采用,每月处理5亿条通信记录,Ofer在Slideshare上说明了具体利到了MongoDB的哪些特性:

弱数据结构的特点,使得BillRun能很快的支持新的CDR(通讯记录)类型。这个特性使文档型数据库很适用于快速发展、业务需求不确定的系统中。

BillRun仅使用了一个Collection,已经管理了数TB的文档数据,并且没有遇到由结构变更、数据爆发式增长的带来的限制和问题

replicaSet副本集特性使建立更多的数据中心DRP变得更轻松。

内建的Sharding分片特性避免系统在数据增长的过程中遇到性能瓶颈。

每秒钟2000条通信记录的插入,MongoDB在架构设计上很好的支持了高负载的数据写入。并且可以使用findAndModify(相对缓慢)完成基础的事务特性,并且通过应用层面的支持,实现双段式提交。

查询方式相比SQL,更加易读、易懂,开发相对轻松。

基于位置允许更好的分析用户使用情况,从而更好地制定移动电话基础设施的投入点。


 

原文链接: When Should I Use MongoDB rather than MySQL (or other RDBMS): The Billing Example